The electronic structure of LaFeAsO, a parent compound of iron-arsenic superconductors, is studied by angle-resolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, and sodium dosing, both the bulk and the surface contributions are identified. We find that a bulk band moves toward high binding energies below the structural transition temperature, and shifts smoothly across the spin-density-wave transition by about 25 meV. Our data suggest that the band reconstruction may play a crucial role in the spin-density-wave and the structural transitions. For the surface states, both the LaO-terminated and FeAs-terminated components are revealed. Certain small band shifts are observed for the FeAs-terminated surface states in the spin-density-wave state, which might be a reflection of the bulk electronic-structure reconstruction. Moreover, sharp quasiparticle peaks quickly rise at low temperatures, indicating drastic reduction in the scattering rate. A kink structure in one of the surface band is shown to be possibly related to the enhanced electron-phonon interactions on the polar surface. © 2010 The American Physical Society.

Surface and bulk electronic structures of LaFeAsO studied by angle-resolved photoemission spectroscopy

Vobornik I;Rossi G;
2010

Abstract

The electronic structure of LaFeAsO, a parent compound of iron-arsenic superconductors, is studied by angle-resolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, and sodium dosing, both the bulk and the surface contributions are identified. We find that a bulk band moves toward high binding energies below the structural transition temperature, and shifts smoothly across the spin-density-wave transition by about 25 meV. Our data suggest that the band reconstruction may play a crucial role in the spin-density-wave and the structural transitions. For the surface states, both the LaO-terminated and FeAs-terminated components are revealed. Certain small band shifts are observed for the FeAs-terminated surface states in the spin-density-wave state, which might be a reflection of the bulk electronic-structure reconstruction. Moreover, sharp quasiparticle peaks quickly rise at low temperatures, indicating drastic reduction in the scattering rate. A kink structure in one of the surface band is shown to be possibly related to the enhanced electron-phonon interactions on the polar surface. © 2010 The American Physical Society.
2010
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/35979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 47
social impact