Although many long non-coding RNAs (lncRNAs) are imprinted, their roles often remain unknown. The Dlk1-Dio3 domain expresses the lncRNA Meg3 and multiple microRNAs and small nucleolar RNAs (snoRNAs) on the maternal chromosome and constitutes an epigenetic model for development. The domain's Dlk1 (Delta-like-1) gene encodes a ligand that inhibits Notch1 signaling and regulates diverse developmental processes. Using a hybrid embryonic stem cell (ESC) system, we find that Dlk1 becomes imprinted during neural differentiation and that this involves transcriptional upregulation on the paternal chromosome. The maternal Dlk1 gene remains poised. Its protection against activation is controlled in cis by Meg3 expression and also requires the H3-Lys-27 methyltransferase Ezh2. Maternal Meg3 expression additionally protects against de novo DNA methylation at its promoter. We find that Meg3 lncRNA is partially retained in cis and overlaps the maternal Dlk1 in embryonic cells. Combined, our data evoke an imprinting model in which allelic lncRNA expression prevents gene activation in cis. Sanli et al. show that the Dlk1 gene becomes imprinted through upregulation of the paternal allele. The maternal allele remains poised during development, and this is controlled by Meg3 lncRNA expression. Additionally, Ezh2 contributes to the repression of the maternal Dlk1, although its recruitment is biallelic and independent of Meg3.

Meg3 Non-coding RNA Expression Controls Imprinting by Preventing Transcriptional Upregulation in cis

Riccio A;
2018

Abstract

Although many long non-coding RNAs (lncRNAs) are imprinted, their roles often remain unknown. The Dlk1-Dio3 domain expresses the lncRNA Meg3 and multiple microRNAs and small nucleolar RNAs (snoRNAs) on the maternal chromosome and constitutes an epigenetic model for development. The domain's Dlk1 (Delta-like-1) gene encodes a ligand that inhibits Notch1 signaling and regulates diverse developmental processes. Using a hybrid embryonic stem cell (ESC) system, we find that Dlk1 becomes imprinted during neural differentiation and that this involves transcriptional upregulation on the paternal chromosome. The maternal Dlk1 gene remains poised. Its protection against activation is controlled in cis by Meg3 expression and also requires the H3-Lys-27 methyltransferase Ezh2. Maternal Meg3 expression additionally protects against de novo DNA methylation at its promoter. We find that Meg3 lncRNA is partially retained in cis and overlaps the maternal Dlk1 in embryonic cells. Combined, our data evoke an imprinting model in which allelic lncRNA expression prevents gene activation in cis. Sanli et al. show that the Dlk1 gene becomes imprinted through upregulation of the paternal allele. The maternal allele remains poised during development, and this is controlled by Meg3 lncRNA expression. Additionally, Ezh2 contributes to the repression of the maternal Dlk1, although its recruitment is biallelic and independent of Meg3.
2018
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
chromatin
development
Dlk1
Dlk1-Dio3 domain
Ezh2
genomic imprinting
histone methylation
long non-coding RNA
Meg3
PRC2
File in questo prodotto:
File Dimensione Formato  
prod_394457-doc_136593.pdf

accesso aperto

Descrizione: Meg3 Non-coding RNA Expression Controls
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.64 MB
Formato Adobe PDF
3.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/359932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? ND
social impact