White lasers are becoming increasingly relevant in various fields since they exhibit unprecedented properties in terms of beam brightness and intensity modulation. Here we introduce a white laser based on a polymer matrix encompassing liquid crystals and multiple organic chromophores in a multifunctional phase-separation system. The separation of the hydrophilic matrix and the hydrophobic liquid crystals leads to the formation of a complex optically active layer, featuring lasing emission tuneable from blue to red. White laser emission is found with an optical excitation threshold of approximately 12 mJ/cm2. Importantly, an external electric field can be used to control the device emission intensity. White lasers with low-voltage (<=10 V) controllable emission might pave the way for a new generation of broadband light sources for analytical, computational, and communication applications.
Electrically controlled white laser emission through liquid crystal/polymer multiphases
Szukalski A;Persano L
;Pisignano D;Camposeo A
;
2020
Abstract
White lasers are becoming increasingly relevant in various fields since they exhibit unprecedented properties in terms of beam brightness and intensity modulation. Here we introduce a white laser based on a polymer matrix encompassing liquid crystals and multiple organic chromophores in a multifunctional phase-separation system. The separation of the hydrophilic matrix and the hydrophobic liquid crystals leads to the formation of a complex optically active layer, featuring lasing emission tuneable from blue to red. White laser emission is found with an optical excitation threshold of approximately 12 mJ/cm2. Importantly, an external electric field can be used to control the device emission intensity. White lasers with low-voltage (<=10 V) controllable emission might pave the way for a new generation of broadband light sources for analytical, computational, and communication applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
s41377-020-0252-9.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


