The use of a dual-parallel Mach-Zehnder modulator in a feed-forward configuration is shown to serve the purpose of cloning the optical phase of a master oscillator on a distributed-feed-back (DFB) slave laser exhibiting a multi-MHz-wide frequency noise spectrum. A residual phase error of 113 mrad is obtained together with an extremely high control bandwidth of hundreds of megahertz and a gigahertz-level capture and tuning range. Besides offering a dramatic improvement over feedback loops, this approach is susceptible of hybrid integration in a cost-effective compact device benefiting from the wide tunability of DFB lasers. (C) 2015 Optical Society of America

Optical phase cloning by an integrated dual-parallel Mach-Zehnder modulator

Marangoni Marco
2015

Abstract

The use of a dual-parallel Mach-Zehnder modulator in a feed-forward configuration is shown to serve the purpose of cloning the optical phase of a master oscillator on a distributed-feed-back (DFB) slave laser exhibiting a multi-MHz-wide frequency noise spectrum. A residual phase error of 113 mrad is obtained together with an extremely high control bandwidth of hundreds of megahertz and a gigahertz-level capture and tuning range. Besides offering a dramatic improvement over feedback loops, this approach is susceptible of hybrid integration in a cost-effective compact device benefiting from the wide tunability of DFB lasers. (C) 2015 Optical Society of America
2015
Istituto di fotonica e nanotecnologie - IFN
Phase locking
Lasers
Coherence transfer
Single sideband modulator
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/360046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact