Membrane Science and Engineering is a rapidly growing field, providing technically, economically or ecologically better solutions then more traditional separation processes in several areas, such as CO2 capture, treatment of complex fluids, desalination, oxygen enrichment of air, packaging materials. Such broad range of applications relies on membrane materials with optimized structure to increase the target compounds/membrane interaction.1 In this presentation, a broad overview of the correlation between the membrane material structure and the target separations is given. The first part of the presentation will deal with computational studies on membrane-solute interactions in desalination systems using ion exchange membranes. This Quantum Mechanics/Molecular Mechanics analysis, supported by experimental findings, shows how the different nature of the counter-ion used to equilibrate the CEM membrane affects the interaction at nanoscale between the polymeric chains hindering the penetrant diffusion.2 In the second part, the discussion will move to the relationships between materials molecular structure and membrane performances for gas separation applications. Two main aspects will be investigated: the addition of N-containing functional groups to enhance the CO2-philicity in PIM-13 and the role of the backbone structure in a series of PIMs with macromolecular chains of 2-dimensional shape (e.g. PIM-TMN-Trip4) with exceptional size-selectivity5 leading to the redefinition of the Robeson upper bounds for CO2/CH4 and CO2/N2 separations. References (1) Koros, W. J.; Zhang, C. Materials for Next-Generation Molecularly Selective Synthetic Membranes. Nat. Mater. 2017, 16, 289. (2) Fuoco, A.; Galier, S.; Roux-de Balmann, H.; De Luca, G. Correlation between Macroscopic Sugar Transfer and Nanoscale Interactions in Cation Exchange Membranes. J. Memb. Sci. 2015, 493, 311-320. (3) Satilmis, B.; Lan?, M.; Fuoco, A.; Rizzuto, C.; Tocci, E.; Bernardo, P.; Clarizia, G.; Esposito, E.; Monteleone, M.; Dendisová, M.; et al. Temperature and Pressure Dependence of Gas Permeation in Amine-Modified PIM-1. J. Memb. Sci. 2018, 555, 483-496. (4) Rose, I.; Bezzu, C. G.; Carta, M.; Comesaña-Gándara, B.; Lasseuguette, E.; Ferrari, M. C. C.; Bernardo, P.; Clarizia, G.; Fuoco, A.; Jansen, J. C.; et al. Polymer Ultrapermeability from the Inefficient Packing of 2D Chains. Nat. Mater. 2017, 16 (9), 932-937. (5) Fuoco, A.; Comesaña-Gándara, B.; Longo, M.; Esposito, E.; Monteleone, M.; Rose, I.; Bezzu, C. G.; Carta, M.; McKeown, N. B.; Jansen, J. C. Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS Appl. Mater. Interfaces 2018, 10 (42), 36475-36482.

A molecular insight in materials for membranes separation processes.

Alessio Fuoco
2019

Abstract

Membrane Science and Engineering is a rapidly growing field, providing technically, economically or ecologically better solutions then more traditional separation processes in several areas, such as CO2 capture, treatment of complex fluids, desalination, oxygen enrichment of air, packaging materials. Such broad range of applications relies on membrane materials with optimized structure to increase the target compounds/membrane interaction.1 In this presentation, a broad overview of the correlation between the membrane material structure and the target separations is given. The first part of the presentation will deal with computational studies on membrane-solute interactions in desalination systems using ion exchange membranes. This Quantum Mechanics/Molecular Mechanics analysis, supported by experimental findings, shows how the different nature of the counter-ion used to equilibrate the CEM membrane affects the interaction at nanoscale between the polymeric chains hindering the penetrant diffusion.2 In the second part, the discussion will move to the relationships between materials molecular structure and membrane performances for gas separation applications. Two main aspects will be investigated: the addition of N-containing functional groups to enhance the CO2-philicity in PIM-13 and the role of the backbone structure in a series of PIMs with macromolecular chains of 2-dimensional shape (e.g. PIM-TMN-Trip4) with exceptional size-selectivity5 leading to the redefinition of the Robeson upper bounds for CO2/CH4 and CO2/N2 separations. References (1) Koros, W. J.; Zhang, C. Materials for Next-Generation Molecularly Selective Synthetic Membranes. Nat. Mater. 2017, 16, 289. (2) Fuoco, A.; Galier, S.; Roux-de Balmann, H.; De Luca, G. Correlation between Macroscopic Sugar Transfer and Nanoscale Interactions in Cation Exchange Membranes. J. Memb. Sci. 2015, 493, 311-320. (3) Satilmis, B.; Lan?, M.; Fuoco, A.; Rizzuto, C.; Tocci, E.; Bernardo, P.; Clarizia, G.; Esposito, E.; Monteleone, M.; Dendisová, M.; et al. Temperature and Pressure Dependence of Gas Permeation in Amine-Modified PIM-1. J. Memb. Sci. 2018, 555, 483-496. (4) Rose, I.; Bezzu, C. G.; Carta, M.; Comesaña-Gándara, B.; Lasseuguette, E.; Ferrari, M. C. C.; Bernardo, P.; Clarizia, G.; Fuoco, A.; Jansen, J. C.; et al. Polymer Ultrapermeability from the Inefficient Packing of 2D Chains. Nat. Mater. 2017, 16 (9), 932-937. (5) Fuoco, A.; Comesaña-Gándara, B.; Longo, M.; Esposito, E.; Monteleone, M.; Rose, I.; Bezzu, C. G.; Carta, M.; McKeown, N. B.; Jansen, J. C. Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS Appl. Mater. Interfaces 2018, 10 (42), 36475-36482.
2019
Istituto per la Tecnologia delle Membrane - ITM
membranes
gas separation
modelling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/360129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact