We present a combined study of the adsorption and ordering of the L-tyrosine amino acid on the dose-packed Ag(111) noble-metal surface in ultrahigh vacuum by means of low-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. On this substrate the biomolecules self-assemble at temperatures exceeding 320 K into linear structures primarily following specific crystallographic directions and evolve with larger molecular coverage into two-dimensional nanoribbons which are commensurate with the underlying atomic lattice. Our high resolution topographical STM data reveal noncovalent molecular dimerization within the highly ordered one-dimensional nanostructures, which recalls the geometrical pattern already seen in the L-methionine/Ag(111) system and supports a universal bonding scheme for amino acids on smooth and unreactive metal surfaces. The molecules desorb for temperatures above 350 K, indicating a relatively weak interaction between the molecules and the substrate. XPS measurements reveal a zwitterionic adsorption, whereas NEXAFS experiments show a tilted adsorption configuration of the phenol moiety. This enables the interdigitation between aromatic side chains of adjacent molecules via parallel-displaced pi-pi interactions which, together with the hydrogen-bonding capability of the hydroxyl functionality, presumably mediates the emergence of the self-assembled supramolecular nanoribbons.

L-Tyrosine on Ag(111): Universality of the Amino Acid 2D Zwitterionic Bonding Scheme?

Cossaro Albano;Morgante Alberto;
2010

Abstract

We present a combined study of the adsorption and ordering of the L-tyrosine amino acid on the dose-packed Ag(111) noble-metal surface in ultrahigh vacuum by means of low-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. On this substrate the biomolecules self-assemble at temperatures exceeding 320 K into linear structures primarily following specific crystallographic directions and evolve with larger molecular coverage into two-dimensional nanoribbons which are commensurate with the underlying atomic lattice. Our high resolution topographical STM data reveal noncovalent molecular dimerization within the highly ordered one-dimensional nanostructures, which recalls the geometrical pattern already seen in the L-methionine/Ag(111) system and supports a universal bonding scheme for amino acids on smooth and unreactive metal surfaces. The molecules desorb for temperatures above 350 K, indicating a relatively weak interaction between the molecules and the substrate. XPS measurements reveal a zwitterionic adsorption, whereas NEXAFS experiments show a tilted adsorption configuration of the phenol moiety. This enables the interdigitation between aromatic side chains of adjacent molecules via parallel-displaced pi-pi interactions which, together with the hydrogen-bonding capability of the hydroxyl functionality, presumably mediates the emergence of the self-assembled supramolecular nanoribbons.
2010
Istituto Officina dei Materiali - IOM -
amino acids
supramolecular self-assembly
noble-metal surfaces
X-ray photoelectron spectroscopy
X-ray absorption spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/36032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 51
social impact