The main objective of this paper is to characterize feedback control laws that are optimal with respect to a quadratic cost functional in the framework of linear hybrid systems undergoing time-driven periodic jumps, namely the so-called hybrid Linear-Quadratic Regulator (LQR) problem. The optimal solution to the hybrid LQR problem is determined both in the case of finite-horizon and infinite-horizon optimal control problems by introducing a hybrid (periodic) extension of the classic Differential and Difference Riccati Equations, thus leading to the notion of Monodromy Riccati Equation. Interestingly, due to the periodic nature of the discrete-time events, the computation of the optimal feedback hinges upon the solution of a differential, rather than algebraic, Riccati equation also in the infinite-horizon case, hence yielding a time-varying, periodic control law. Necessary and sufficient conditions that ensure asymptotic stability of the closed-loop system are provided and discussed in detail in the case of infinite-horizon optimal control problems.

The linear quadratic regulator for periodic hybrid systems

Possieri Corrado;
2020

Abstract

The main objective of this paper is to characterize feedback control laws that are optimal with respect to a quadratic cost functional in the framework of linear hybrid systems undergoing time-driven periodic jumps, namely the so-called hybrid Linear-Quadratic Regulator (LQR) problem. The optimal solution to the hybrid LQR problem is determined both in the case of finite-horizon and infinite-horizon optimal control problems by introducing a hybrid (periodic) extension of the classic Differential and Difference Riccati Equations, thus leading to the notion of Monodromy Riccati Equation. Interestingly, due to the periodic nature of the discrete-time events, the computation of the optimal feedback hinges upon the solution of a differential, rather than algebraic, Riccati equation also in the infinite-horizon case, hence yielding a time-varying, periodic control law. Necessary and sufficient conditions that ensure asymptotic stability of the closed-loop system are provided and discussed in detail in the case of infinite-horizon optimal control problems.
2020
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Hybrid systems
Linear systems
Optimal Control
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/360424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact