Rare events (e.g. major floods, violent conflicts) are events that have potentially widespread and/or disastrous impact on society. The overall goal is to build a framework capable to classify, predict and explain such rare events. To do so, we envisage the usage of a mixture of sub-symbolic Machine Learning (ML) and Ontology-based Statistical Relatio-nal Learning (OSRL) techniques to generate rare events classifiers and predictors, which additionally may be mapped into natural language to ease human interpretability of the decision process.

Towards Ontology-based Explainable Classification of Rare Events

Cardillo FA;Straccia U
2019

Abstract

Rare events (e.g. major floods, violent conflicts) are events that have potentially widespread and/or disastrous impact on society. The overall goal is to build a framework capable to classify, predict and explain such rare events. To do so, we envisage the usage of a mixture of sub-symbolic Machine Learning (ML) and Ontology-based Statistical Relatio-nal Learning (OSRL) techniques to generate rare events classifiers and predictors, which additionally may be mapped into natural language to ease human interpretability of the decision process.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.orgunit Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI -
dc.authority.people Cardillo FA it
dc.authority.people Straccia U it
dc.collection.id.s ef685afb-34ea-4d8f-b47d-1d7c94d318d5 *
dc.collection.name 08.07 Working paper *
dc.contributor.appartenenza Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI *
dc.contributor.appartenenza.mi 973 *
dc.date.accessioned 2024/02/16 17:17:54 -
dc.date.available 2024/02/16 17:17:54 -
dc.date.issued 2019 -
dc.description.abstracteng Rare events (e.g. major floods, violent conflicts) are events that have potentially widespread and/or disastrous impact on society. The overall goal is to build a framework capable to classify, predict and explain such rare events. To do so, we envisage the usage of a mixture of sub-symbolic Machine Learning (ML) and Ontology-based Statistical Relatio-nal Learning (OSRL) techniques to generate rare events classifiers and predictors, which additionally may be mapped into natural language to ease human interpretability of the decision process. -
dc.description.affiliations CNR-ILC, Pisa, Italy; CNR-ISTI, Pisa, Italy -
dc.description.allpeople Cardillo, Fa; Straccia, U -
dc.description.allpeopleoriginal Cardillo F.A.; Straccia U. -
dc.description.fulltext open en
dc.description.numberofauthors 2 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/360743 -
dc.identifier.url https://hal.archives-ouvertes.fr/hal-02104520 -
dc.language.iso eng -
dc.miur.last.status.update 2025-03-20T09:00:22Z *
dc.relation.firstpage 1 -
dc.relation.lastpage 2 -
dc.relation.numberofpages 2 -
dc.subject.keywords Ontologies Explainable Classification of Rare Events -
dc.subject.keywords Statistical Relational Machine Learning -
dc.subject.singlekeyword Ontologies Explainable Classification of Rare Events *
dc.subject.singlekeyword Statistical Relational Machine Learning *
dc.title Towards Ontology-based Explainable Classification of Rare Events en
dc.type.driver info:eu-repo/semantics/other -
dc.type.full 08 Report e Working Paper::08.07 Working paper it
dc.type.miur -2.0 -
dc.ugov.descaux1 403463 -
iris.mediafilter.data 2025/03/21 03:38:45 *
iris.orcid.lastModifiedDate 2024/04/04 10:21:54 *
iris.orcid.lastModifiedMillisecond 1712218914023 *
iris.sitodocente.maxattempts 4 -
Appare nelle tipologie: 08.07 Working paper
File in questo prodotto:
File Dimensione Formato  
prod_403463-doc_140459.pdf

accesso aperto

Descrizione: RareEvents
Dimensione 326.08 kB
Formato Adobe PDF
326.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/360743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact