The annual and diurnal behavior of the temperature differences in urban areas is important to predict the possible impacts of the future land-use development on climate change and air pollution in heavily populated areas. The behavior of the temperature as well as wind spatio-temporal differences in turn is strongly interconnected with the turbulent and radiative fluxes variability. A 3-year dataset from three automated micrometeorological stations run by the Regional Agency for Environment Protection of Lazio and located in and around the city of Rome is used. The distribution of the urban heat island intensity for the whole period of measurements peaks at 1 °C, but higher values are frequently registered especially referring to differences with the coastal site also due to the sea-breeze cooling effects. The city is generally drier and characterized by winds of lower intensity reaching their maximum 1 h later with the respect to the sub-urban/coastal sites during the afternoon. The micrometeorological data are also analyzed to estimate some key parameter characteristic of the terrain, which represents the main forcing in the numerical models for UHI estimates, such as the albedo, aerodynamics and atmospheric turbulence parameters.

Interconnections of the urban heat island with the spatial and temporal micrometeorological variability in Rome

Ciardini V;Caporaso L;Petenko I;Argentini S
2019

Abstract

The annual and diurnal behavior of the temperature differences in urban areas is important to predict the possible impacts of the future land-use development on climate change and air pollution in heavily populated areas. The behavior of the temperature as well as wind spatio-temporal differences in turn is strongly interconnected with the turbulent and radiative fluxes variability. A 3-year dataset from three automated micrometeorological stations run by the Regional Agency for Environment Protection of Lazio and located in and around the city of Rome is used. The distribution of the urban heat island intensity for the whole period of measurements peaks at 1 °C, but higher values are frequently registered especially referring to differences with the coastal site also due to the sea-breeze cooling effects. The city is generally drier and characterized by winds of lower intensity reaching their maximum 1 h later with the respect to the sub-urban/coastal sites during the afternoon. The micrometeorological data are also analyzed to estimate some key parameter characteristic of the terrain, which represents the main forcing in the numerical models for UHI estimates, such as the albedo, aerodynamics and atmospheric turbulence parameters.
2019
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Istituto di Scienze Marine - ISMAR
urban heat island
Rome
ultrasonic anemometer
micrometeorlogical parameters
see-breeze
File in questo prodotto:
File Dimensione Formato  
prod_411698-doc_170044.pdf

solo utenti autorizzati

Descrizione: Interconnections of the urban heat island with the spatial and temporal micrometeorological variability in Rome
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.33 MB
Formato Adobe PDF
6.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/360823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact