The tetragonal phase of chromium (III) oxide, although unstable in the bulk, can be synthesized in epitaxial heterostructures. Theoretical investigation by density-functional theory predicts an antiferromagnetic ground state for this compound. We demonstrate experimentally antiferromagnetism up to 40 K in ultrathin films of t-Cr2O3 by electrical measurements exploiting interface effect within a neighboring ultrathin Pt layer. We show that magnetotransport in Pt is affected by both spin-Hall magnetoresistance and magnetic proximity effect while we exclude any role of magnetism for the lowerature resistance anomaly observed in Pt.
Detecting antiferromagnetism in tetragonal C r2 O3 by electrical measurements
Barone C;Picozzi S;Pagano S;
2019
Abstract
The tetragonal phase of chromium (III) oxide, although unstable in the bulk, can be synthesized in epitaxial heterostructures. Theoretical investigation by density-functional theory predicts an antiferromagnetic ground state for this compound. We demonstrate experimentally antiferromagnetism up to 40 K in ultrathin films of t-Cr2O3 by electrical measurements exploiting interface effect within a neighboring ultrathin Pt layer. We show that magnetotransport in Pt is affected by both spin-Hall magnetoresistance and magnetic proximity effect while we exclude any role of magnetism for the lowerature resistance anomaly observed in Pt.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.