A new iterative method for the solution of linear systems, based upon a new splitting of the coefficient matrix A, is presented. The method is obtained by considering splittings of the type A=(A-M)+M, where M?-1 is a symmetric tridiagonal matrix, and by minimizing Frobenius norm of the iteration matrix so derived. Numerical examp1es are provided, showing that our algorithm improves the rate of convergence of Jacobi method, without increasing the order of magnitude of the computational efforts required.

New techniques for the solution of linear systems by iterative methods

Codenotti B;Favati P
1987

Abstract

A new iterative method for the solution of linear systems, based upon a new splitting of the coefficient matrix A, is presented. The method is obtained by considering splittings of the type A=(A-M)+M, where M?-1 is a symmetric tridiagonal matrix, and by minimizing Frobenius norm of the iteration matrix so derived. Numerical examp1es are provided, showing that our algorithm improves the rate of convergence of Jacobi method, without increasing the order of magnitude of the computational efforts required.
1987
Istituto di informatica e telematica - IIT
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Linear systems
File in questo prodotto:
File Dimensione Formato  
prod_419589-doc_148353.pdf

accesso aperto

Descrizione: New techniques for the solution of linear systems by iterative methods
Dimensione 800 kB
Formato Adobe PDF
800 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/361189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact