In this paper we propose a methodology to assess the syntax complexity of a sentence representing it as sequence of parts-of-speech and comparing Recurrent Neural Networks and Support Vector Machine. We have carried out experiments in English language which are compared with previous results obtained for the Italian one.

Machine Learning Models for Measuring Syntax Complexity of English Text

Giovanni Pilato
2020

Abstract

In this paper we propose a methodology to assess the syntax complexity of a sentence representing it as sequence of parts-of-speech and comparing Recurrent Neural Networks and Support Vector Machine. We have carried out experiments in English language which are compared with previous results obtained for the Italian one.
2020
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
text-evaluation
text-simplification
deep-learning
naturallanguage-processing
File in questo prodotto:
File Dimensione Formato  
prod_404516-doc_140983.pdf

solo utenti autorizzati

Descrizione: Machine Learning Models for Measuring Syntax Complexity of English Text
Tipologia: Documento in Pre-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 151.36 kB
Formato Adobe PDF
151.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/361302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact