Cancer cells activate stress-response mechanisms to adapt themselves to a variety of stressful conditions. Among these protective mechanisms, those controlled by the stress-induced nuclear protein 1 (NUPR1) belong to the most conserved ones. NUPR1 is an 82-residue-long, monomeric, basic and intrinsically disordered protein (IDP), which was found to be invariably overexpressed in some, if not all, cancer tissues. Remarkably, we and others have previously showed that genetic inactivation of the Nupr1 gene antagonizes the growth of pancreatic cancer as well as several other tumors. With the use of a multidisciplinary strategy by combining biophysical, biochemical, bioinformatic, and biological approaches, a trifluoperazine-derived compound, named ZZW-115, has been identified as an inhibitor of the NUPR1 functions. The anticancer activity of the ZZW-115 was first validated on a large panel of cancer cells. Furthermore, ZZW-115 produced a dose-dependent tumor regression of the tumor size in xenografted mice. Mechanistically, we have demonstrated that NUPR1 binds to several importins. Because ZZW-115 binds NUPR1 through the region around the amino acid Thr68, which is located into the nuclear location signal (NLS) region of the protein, we demonstrated that treatment with ZZW-115 inhibits completely the translocation of NUPR1 from the cytoplasm to the nucleus by competing with importins.

Targeting the stress-induced protein NUPR1 to treat pancreatic adenocarcinoma

Bruno Rizzuti;
2019

Abstract

Cancer cells activate stress-response mechanisms to adapt themselves to a variety of stressful conditions. Among these protective mechanisms, those controlled by the stress-induced nuclear protein 1 (NUPR1) belong to the most conserved ones. NUPR1 is an 82-residue-long, monomeric, basic and intrinsically disordered protein (IDP), which was found to be invariably overexpressed in some, if not all, cancer tissues. Remarkably, we and others have previously showed that genetic inactivation of the Nupr1 gene antagonizes the growth of pancreatic cancer as well as several other tumors. With the use of a multidisciplinary strategy by combining biophysical, biochemical, bioinformatic, and biological approaches, a trifluoperazine-derived compound, named ZZW-115, has been identified as an inhibitor of the NUPR1 functions. The anticancer activity of the ZZW-115 was first validated on a large panel of cancer cells. Furthermore, ZZW-115 produced a dose-dependent tumor regression of the tumor size in xenografted mice. Mechanistically, we have demonstrated that NUPR1 binds to several importins. Because ZZW-115 binds NUPR1 through the region around the amino acid Thr68, which is located into the nuclear location signal (NLS) region of the protein, we demonstrated that treatment with ZZW-115 inhibits completely the translocation of NUPR1 from the cytoplasm to the nucleus by competing with importins.
2019
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Rende (CS)
drug design
intrinsically disordered protein
pancreatic ductal adenocarcinoma
molecular dynamics
NUPR1
stress response
spectroscopy
File in questo prodotto:
File Dimensione Formato  
Santofimia-Castaño et al., Cells 2019;8,1453-1-9.pdf

accesso aperto

Descrizione: Santofimia-Castaño et al., Cells 2019;8,1453-1-9
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/361515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 42
social impact