Hydrogen sulfide (H2S) has been recently found as an important signaling molecule especially in root system architecture of plants. The regulation of root formation through H2S has been reported in previous works; while the profiling of metabolites in response to H2S is not clearly discussed. To this end, different concentrations of sodium hydrosulfide (an H2S donor) were applied to the culture of Linum album hairy roots. Subsequently, the amino acid profiles, soluble carbohydrates, and central intermediates of phenylpropanoid pathway with two branches of lignans and flavonoids were assessed by spectroscopy and high performance liquid chromatography techniques. An analysis of the signaling molecules (nitric oxide, hydrogen peroxide, and salicylic acid) was also conducted as they proposed to act in conjunction with H2S. The H2S activated antioxidant systems and caused a shift from flavonoid to lignan production (podophyllotoxin and 6-methoxypodophyllotoxin); although, some of the flavonoids increased in a dose-dependent manner. The H2S decreased the contents of phenylalanine and tyrosine as substrates of the phenylpropanoid pathway, but increased proline and histidine as an osmolyte and antioxidant, respectively. These findings propose that H2S modulates other signaling molecules, regulates free amino acids, and mediates biosynthesis of lignans and flavonoids in the phenylpropanoids biosynthesis pathway.

Hydrogen sulfide directs metabolic flux towards the lignan biosynthesis in Linum album hairy roots

De Michele Roberto;
2019

Abstract

Hydrogen sulfide (H2S) has been recently found as an important signaling molecule especially in root system architecture of plants. The regulation of root formation through H2S has been reported in previous works; while the profiling of metabolites in response to H2S is not clearly discussed. To this end, different concentrations of sodium hydrosulfide (an H2S donor) were applied to the culture of Linum album hairy roots. Subsequently, the amino acid profiles, soluble carbohydrates, and central intermediates of phenylpropanoid pathway with two branches of lignans and flavonoids were assessed by spectroscopy and high performance liquid chromatography techniques. An analysis of the signaling molecules (nitric oxide, hydrogen peroxide, and salicylic acid) was also conducted as they proposed to act in conjunction with H2S. The H2S activated antioxidant systems and caused a shift from flavonoid to lignan production (podophyllotoxin and 6-methoxypodophyllotoxin); although, some of the flavonoids increased in a dose-dependent manner. The H2S decreased the contents of phenylalanine and tyrosine as substrates of the phenylpropanoid pathway, but increased proline and histidine as an osmolyte and antioxidant, respectively. These findings propose that H2S modulates other signaling molecules, regulates free amino acids, and mediates biosynthesis of lignans and flavonoids in the phenylpropanoids biosynthesis pathway.
2019
Istituto di Bioscienze e Biorisorse - IBBR - Sede Secondaria Palermo
Hairy root
Hydrogen sulfide
Linum album
Phenylpropanoid
Signaling
File in questo prodotto:
File Dimensione Formato  
prod_406903-doc_173205.pdf

solo utenti autorizzati

Descrizione: Hydrogen sulfide directs metabolicflux towards the lignan biosynthesis inLinum albumhairy roots
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/361863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact