The need of a fs-scale pulsed, high repetition rate, X-ray source for time-resolved fine analysis of matter (spectroscopy and photon scattering) in the linear response regime is addressed by the conceptual design of a facility called MariX (Multi-disciplinary Advanced Research Infrastructure for the generation and application of X-rays) outperforming current X-ray sources for the declared scope. MariX is based on the original design of a two-pass two-way superconducting linear electron accelerator, equipped with an arc compressor, to be operated in CW mode (1 MHz). MariX provides FEL emission in the range 0.2-8 keV with 10 photons per pulse ideally suited for photoelectric effect and inelastic X-ray scattering experiments. The accelerator complex includes an early stage that supports an advanced inverse Compton source of very high-flux hard X-rays of energies up to 180 keV that is well adapted for large area radiological imaging, realizing a broad science programme and serving a multidisciplinary user community, covering fundamental science of matter and application to life sciences, including health at preclinical and clinical level.

MariX, an advanced MHz-class repetition rate X-ray source for linear regime time-resolved spectroscopy and photon scattering

Coluccelli N;Galzerano G;Laporta P;Ramponi R;
2019

Abstract

The need of a fs-scale pulsed, high repetition rate, X-ray source for time-resolved fine analysis of matter (spectroscopy and photon scattering) in the linear response regime is addressed by the conceptual design of a facility called MariX (Multi-disciplinary Advanced Research Infrastructure for the generation and application of X-rays) outperforming current X-ray sources for the declared scope. MariX is based on the original design of a two-pass two-way superconducting linear electron accelerator, equipped with an arc compressor, to be operated in CW mode (1 MHz). MariX provides FEL emission in the range 0.2-8 keV with 10 photons per pulse ideally suited for photoelectric effect and inelastic X-ray scattering experiments. The accelerator complex includes an early stage that supports an advanced inverse Compton source of very high-flux hard X-rays of energies up to 180 keV that is well adapted for large area radiological imaging, realizing a broad science programme and serving a multidisciplinary user community, covering fundamental science of matter and application to life sciences, including health at preclinical and clinical level.
2019
Istituto di fotonica e nanotecnologie - IFN
Free-electron lasers
Linear accelerators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/362084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact