Climate change and global food demand in coming decades urge effective actions for more efficient uses of water and soil resources. This paper reports the preliminary findings of a study assessing the potential of sheep scoured wool residues (SWRs) as soil amendments to enhance the physical and hydraulic properties of a sandy loam soil under rain conditions. Methods: Two different SWRs were used: scoured residues (white wool, WW) and carbonized scoured residues (black wool, BW) at different SWRs/soil ratios (0.0, 0.5, 1.0 and 2.0%). Soil bulk density (BD), total porosity (TP), aggregates stability, aggregate size distribution, saturated hydraulic conductivity, and water retention properties were determined under rain conditions, in addition to rainwater balance (storage, percolation and runoff). Results: Both WW and BW, particularly at the high wool/soil ratio (2%), significantly reduced soil BD by 11.98% and 9.85%, respectively. Moreover, WW and BW increased TP by 16.45% and 13.57% and available water capacity by 6.5% and 18.1%, respectively. SWRs increased the formation of macro-aggregates and increased aggregate stability. The results of rainwater balance showed higher percolation percentages and less rainwater storage in the wool-treated soil. Conclusions: The increase in water percolation is in line with the increased total porosity and the higher saturated hydraulic conductivity of wool-treated soil. Despite the high capacity of absorbing water, SWRs affected the water movement of the soil more than its water retention.

The potential of recycling wool residues as an amendment for enhancing the physical and hydraulic properties of a sandy loam soil

Ugolini F;Baronti S;Maienza A;Camilli F;Bonora L;Martelli F;Primicerio J;Ungaro F
2019

Abstract

Climate change and global food demand in coming decades urge effective actions for more efficient uses of water and soil resources. This paper reports the preliminary findings of a study assessing the potential of sheep scoured wool residues (SWRs) as soil amendments to enhance the physical and hydraulic properties of a sandy loam soil under rain conditions. Methods: Two different SWRs were used: scoured residues (white wool, WW) and carbonized scoured residues (black wool, BW) at different SWRs/soil ratios (0.0, 0.5, 1.0 and 2.0%). Soil bulk density (BD), total porosity (TP), aggregates stability, aggregate size distribution, saturated hydraulic conductivity, and water retention properties were determined under rain conditions, in addition to rainwater balance (storage, percolation and runoff). Results: Both WW and BW, particularly at the high wool/soil ratio (2%), significantly reduced soil BD by 11.98% and 9.85%, respectively. Moreover, WW and BW increased TP by 16.45% and 13.57% and available water capacity by 6.5% and 18.1%, respectively. SWRs increased the formation of macro-aggregates and increased aggregate stability. The results of rainwater balance showed higher percolation percentages and less rainwater storage in the wool-treated soil. Conclusions: The increase in water percolation is in line with the increased total porosity and the higher saturated hydraulic conductivity of wool-treated soil. Despite the high capacity of absorbing water, SWRs affected the water movement of the soil more than its water retention.
2019
Istituto per la BioEconomia - IBE
Sheep wool residues Soil physical properties · Soil functions · Rainwater
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/362329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact