Evidence that lipids play different roles in the biological environment, particularly in dealing with metabolic regulation and cell signaling, has led to a growing interest in these molecules, and nowadays the research field of lipid structures and functions is called lipidomics. The term describes diverse research areas, from mapping the entire spectrum of lipids in organisms to describing the function and metabolism of individual lipids. Recent investigations on geometrical trans isomers of fatty acid derivatives, which have the double bonds in the some position as the natural compounds but with the trans instead of the naturally occurring cis geometry, highlighted these compounds as a new target for lipidomics. In addition to the identification of their structures and functions, research in a multidisciplinary context aims at understanding the biochemical significance of cis and trans lipid geometry, and a chemical biology approach can be envisaged to explore the role of the geometry change as either an alteration or a signal that con perturb a biological system and induce a cellular response.

Geometrical Trans Lipid Isomers: A New Target for Lipidomics

Ferreri C;Chatgilialoglu C
2005

Abstract

Evidence that lipids play different roles in the biological environment, particularly in dealing with metabolic regulation and cell signaling, has led to a growing interest in these molecules, and nowadays the research field of lipid structures and functions is called lipidomics. The term describes diverse research areas, from mapping the entire spectrum of lipids in organisms to describing the function and metabolism of individual lipids. Recent investigations on geometrical trans isomers of fatty acid derivatives, which have the double bonds in the some position as the natural compounds but with the trans instead of the naturally occurring cis geometry, highlighted these compounds as a new target for lipidomics. In addition to the identification of their structures and functions, research in a multidisciplinary context aims at understanding the biochemical significance of cis and trans lipid geometry, and a chemical biology approach can be envisaged to explore the role of the geometry change as either an alteration or a signal that con perturb a biological system and induce a cellular response.
2005
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/36246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 56
social impact