Palladium nanoparticles (Pd NPs) synthesized by the metal vapor synthesis technique were supported on poly(4-vinylpyridine) 2% cross-linked with divinylbenzene (Pd/PVPy). Transmission electron microscopy revealed the presence of small metal nanoparticles (dm = 2.9 nm) highly dispersed on the PVPy. The Pd/PVPy system showed high catalytic efficiency in Suzuki-Miyaura carbon-carbon coupling reactions of both non-activated and deactivated aromatic iodides and bromides with aryl boronic acids, carried out under an air atmosphere. The high turnover of the catalyst and the ability of the PVPy resin to retain active Pd species are highlighted. By comparing the catalytic performances of Pd/PVPy with those observed by using commercially available Pd-based supported catalysts, the reported system showed higher selectivity and lower Pd leaching.

Polyvinylpyridine-supported palladium nanoparticles: An efficient catalyst for Suzuki-Miyaura coupling reactions

Rizzo F;Pitzalis E;Evangelisti C;
2020

Abstract

Palladium nanoparticles (Pd NPs) synthesized by the metal vapor synthesis technique were supported on poly(4-vinylpyridine) 2% cross-linked with divinylbenzene (Pd/PVPy). Transmission electron microscopy revealed the presence of small metal nanoparticles (dm = 2.9 nm) highly dispersed on the PVPy. The Pd/PVPy system showed high catalytic efficiency in Suzuki-Miyaura carbon-carbon coupling reactions of both non-activated and deactivated aromatic iodides and bromides with aryl boronic acids, carried out under an air atmosphere. The high turnover of the catalyst and the ability of the PVPy resin to retain active Pd species are highlighted. By comparing the catalytic performances of Pd/PVPy with those observed by using commercially available Pd-based supported catalysts, the reported system showed higher selectivity and lower Pd leaching.
2020
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Metal vapor synthesis
Pd catalysts
Polyvinylpyridine
Suzuki-Miyaura reaction
File in questo prodotto:
File Dimensione Formato  
Catalysts 2020, 10(3), 330.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 23.64 MB
Formato Adobe PDF
23.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/362522
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact