The selective oxidation of veratryl alcohol as lignin-derived compound was studied under mild conditions, using Au-Cu catalysts synthesized from pre-formed nanoparticles with different Au:Cu molar ratios. Bimetallic catalysts show higher activity compared to monometallic counterparts, highlighting a clear synergistic effect. By comparing the physico-chemical surface properties of catalysts supported on carbon and Al2O3, we were able to establish a strong support effect, with alumina-based catalysts being more active than carbon-supported ones. Moreover, TEM and X-ray photoelectron spectroscopy (XPS) analyses showed a different composition of nanoparticles (NPs) and metal exposure, and we established that Au is the active phase of the reaction. The co-presence of Au and Cu species, and their different interaction with the support, enabled obtaining 80% conversion of veratryl alcohol to veratryl aldehyde as a unique product. Moreover, the Au1Cu1 supported on alumina catalyst was recovered by filtration and reused without significant loss of activity and selectivity up to four times.

Synergistic effect in Au-Cu bimetallic catalysts for the valorization of Lignin-Derived compounds

Evangelisti C;
2020

Abstract

The selective oxidation of veratryl alcohol as lignin-derived compound was studied under mild conditions, using Au-Cu catalysts synthesized from pre-formed nanoparticles with different Au:Cu molar ratios. Bimetallic catalysts show higher activity compared to monometallic counterparts, highlighting a clear synergistic effect. By comparing the physico-chemical surface properties of catalysts supported on carbon and Al2O3, we were able to establish a strong support effect, with alumina-based catalysts being more active than carbon-supported ones. Moreover, TEM and X-ray photoelectron spectroscopy (XPS) analyses showed a different composition of nanoparticles (NPs) and metal exposure, and we established that Au is the active phase of the reaction. The co-presence of Au and Cu species, and their different interaction with the support, enabled obtaining 80% conversion of veratryl alcohol to veratryl aldehyde as a unique product. Moreover, the Au1Cu1 supported on alumina catalyst was recovered by filtration and reused without significant loss of activity and selectivity up to four times.
2020
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Au-Cu bimetallic catalysts
Catalytic oxidation
Second-generation biomass
Support effect
Veratraldehyde
Veratryl alcohol
File in questo prodotto:
File Dimensione Formato  
catalysts-10-00332-v2.pdf

accesso aperto

Descrizione: Synergistic E ect in Au-Cu Bimetallic Catalysts for the Valorization of Lignin-Derived Compounds
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/362523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact