The equality between dissipation and energy drop is a structural property of gradient-flow dynamics. The classical implicit Euler scheme fails to reproduce this equality at the discrete level. We discuss two modifications of the Euler scheme satisfying an exact energy equality at the discrete level. Existence of discrete solutions and their convergence as the fineness of the partition goes to zero are discussed. Eventually, we address extensions to generalized gradient flows, GENERIC flows, and curves of maximal slope in metric spaces.

Two structure-preserving time discretizations for gradient flows

U Stefanelli;
2019

Abstract

The equality between dissipation and energy drop is a structural property of gradient-flow dynamics. The classical implicit Euler scheme fails to reproduce this equality at the discrete level. We discuss two modifications of the Euler scheme satisfying an exact energy equality at the discrete level. Existence of discrete solutions and their convergence as the fineness of the partition goes to zero are discussed. Eventually, we address extensions to generalized gradient flows, GENERIC flows, and curves of maximal slope in metric spaces.
2019
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Gradient flow; Structure-preserving time discretization; GENERIC flows; Curves of maximal slope
File in questo prodotto:
File Dimensione Formato  
prod_415079-doc_152459.pdf

accesso aperto

Descrizione: Two structure-preserving time discretizations for gradient flows
Tipologia: Versione Editoriale (PDF)
Dimensione 573.69 kB
Formato Adobe PDF
573.69 kB Adobe PDF Visualizza/Apri
prod_415079-doc_152460.pdf

non disponibili

Descrizione: Two structure-preserving time discretizations for gradient flows
Tipologia: Versione Editoriale (PDF)
Dimensione 528.17 kB
Formato Adobe PDF
528.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/362814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact