Black phosphorus (bP) is a crystalline material which can be seen as an ordered stacking of two-dimensional layers, referred to as Phosphorene. The knowledge of the linear thermal expansion coefficients (LTEC) of bP is of great interest in the field of 2D materials for a better understanding of the anistropic thermal properties and exfoliation mechanism of this material. Despite several theoretical and experimental studies important uncertainties remain in the determination of the LTEC of bP. Here, we report accurate thermal expansion measurements along the three crystallographic axes using in-situ high temperature x-ray diffraction. From the progressive reduction of the diffracted intensities with temperature we monitored the loss of the crystal structure of bP across the investigated temperature range, evidencing two thermal expansion regimes at temperature below and above 706 K. Below 706 K, we observe a strong out-of-plane anisotropy, while at temperatures above 706 K a larger thermal expansion occurs along the a crystallographic direction. From our data and by taking advantage of ab-initio optimization, we propose a detailed anisotropic thermal expansion mechanism of bP, which leads to an inter- and intra-layer destabilization. An interpretation of it, based on the high T perturbation of the stabilizing sp orbital mixing effect, is provided, consistently with high pressure data.
Anisotropic thermal expansion of black phosphorus from nanoscale dynamics of Phosphorene layers
Matteo Ceppatelli;Manuel Serrano Ruiz;Maurizio Peruzzini;
2020
Abstract
Black phosphorus (bP) is a crystalline material which can be seen as an ordered stacking of two-dimensional layers, referred to as Phosphorene. The knowledge of the linear thermal expansion coefficients (LTEC) of bP is of great interest in the field of 2D materials for a better understanding of the anistropic thermal properties and exfoliation mechanism of this material. Despite several theoretical and experimental studies important uncertainties remain in the determination of the LTEC of bP. Here, we report accurate thermal expansion measurements along the three crystallographic axes using in-situ high temperature x-ray diffraction. From the progressive reduction of the diffracted intensities with temperature we monitored the loss of the crystal structure of bP across the investigated temperature range, evidencing two thermal expansion regimes at temperature below and above 706 K. Below 706 K, we observe a strong out-of-plane anisotropy, while at temperatures above 706 K a larger thermal expansion occurs along the a crystallographic direction. From our data and by taking advantage of ab-initio optimization, we propose a detailed anisotropic thermal expansion mechanism of bP, which leads to an inter- and intra-layer destabilization. An interpretation of it, based on the high T perturbation of the stabilizing sp orbital mixing effect, is provided, consistently with high pressure data.File | Dimensione | Formato | |
---|---|---|---|
Nanoscale, 2020,12, 4491-4497.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
NR-ART-10-2019-009218.R1_Proof_hi-Anisotropic thermal expansion of black phosphorus from nanoscale.pdf
Open Access dal 11/01/2021
Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in https://doi.org/10.1039/C9NR09218H."
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.