We describe the in-flight performance of the horn-coupled lumped element kinetic inductance detector arrays of the balloon-borne OLIMPO experiment. These arrays have been designed to match the spectral bands of OLIMPO: 150, 250, 350, and 460GHz, and they have been operated at 0.3K and at an altitude of 37.8km during the stratospheric flight of the OLIMPO payload, in Summer 2018. During the first hours of flight, we tuned the detectors and verified their large dynamics under the radiative background variations due to elevation increase of the telescope and to the insertion of the plug-in room-temperature differential Fourier transform spectrometer into the optical chain. We have found that the detector noise equivalent powers are close to be photon noise limited and lower than those measured on the ground. Moreover, the data contamination due to primary cosmic rays hitting the arrays is less than 3% for all the pixels of all the arrays and less than 1% for most of the pixels. These results can be considered the first step of KID technology validation in a representative space environment.

In-Flight Performance of the LEKIDs of the OLIMPO Experiment

Castellano M G;Colantoni I;Pettinari G;
2020

Abstract

We describe the in-flight performance of the horn-coupled lumped element kinetic inductance detector arrays of the balloon-borne OLIMPO experiment. These arrays have been designed to match the spectral bands of OLIMPO: 150, 250, 350, and 460GHz, and they have been operated at 0.3K and at an altitude of 37.8km during the stratospheric flight of the OLIMPO payload, in Summer 2018. During the first hours of flight, we tuned the detectors and verified their large dynamics under the radiative background variations due to elevation increase of the telescope and to the insertion of the plug-in room-temperature differential Fourier transform spectrometer into the optical chain. We have found that the detector noise equivalent powers are close to be photon noise limited and lower than those measured on the ground. Moreover, the data contamination due to primary cosmic rays hitting the arrays is less than 3% for all the pixels of all the arrays and less than 1% for most of the pixels. These results can be considered the first step of KID technology validation in a representative space environment.
2020
Istituto di fotonica e nanotecnologie - IFN
Istituto di Nanotecnologia - NANOTEC
Cosmic rays
LEKIDs
OLIMPO
Stratosphere
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/362881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact