We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. The exponent 3/4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions.

N-3/4 Law in the cubic lattice

U Stefanelli
2019

Abstract

We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. The exponent 3/4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions.
2019
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Wulff shape
N-3/4 law
Cubic lattice
Fluctuations
Edge perimeter
File in questo prodotto:
File Dimensione Formato  
prod_407269-doc_142679.pdf

accesso aperto

Descrizione: N-3/4 Law in the cubic lattice
Tipologia: Versione Editoriale (PDF)
Dimensione 529.44 kB
Formato Adobe PDF
529.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/362972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact