Experiments were performed to determine the influence of various dehydration and vitrification treatment times on the 'one-step freezing' cryopreservation of embryonic axes (EAs), composed of zygotic embryos and cotyledon residuals, from mature seeds of a Georgian provenance of chestnut (Castanea sativa Mill.). Dehydration was carried out in laminar flow hood from 1 to 5 h, and vitrification experiments were carried out by immersion of EAs in PVS2 vitrification solution up to 120 min, both followed by direct immersion in liquid nitrogen. Both systems resulted in inducing specimen tolerance to ultra-rapid freezing, although to a different extent. Full germination of cryo-stored EAs after 5 h of dehydration (reducing moisture content from initial 66% to 21%) has been increased from 0% to 66.7%. A pre-treatment of EAs in PVS2 vitrification solution for 30 min produced fully developed plantlets at a rate of 55.6% in post-cryopreservation. Plantlet regrowth from cryopreservation was faster in EAs that underwent the dehydration/'one-step freezing' procedure. All the plantlet from cryopreserved EAs could be easily acclimatized, producing healthy potted plants. Finally, the TTC test showed to be useful for a fast evaluation of specimen survival after thawing and, as a consequence, to speed up the development of optimized cryoprotocols.

Development of an Efficient 'One-Step Freezing' Cryopreservation Protocol for a Georgian Provenance of Chestnut (Castanea sativa Mill.) Zygotic Embryos

Benelli C;Lambardi M
2019

Abstract

Experiments were performed to determine the influence of various dehydration and vitrification treatment times on the 'one-step freezing' cryopreservation of embryonic axes (EAs), composed of zygotic embryos and cotyledon residuals, from mature seeds of a Georgian provenance of chestnut (Castanea sativa Mill.). Dehydration was carried out in laminar flow hood from 1 to 5 h, and vitrification experiments were carried out by immersion of EAs in PVS2 vitrification solution up to 120 min, both followed by direct immersion in liquid nitrogen. Both systems resulted in inducing specimen tolerance to ultra-rapid freezing, although to a different extent. Full germination of cryo-stored EAs after 5 h of dehydration (reducing moisture content from initial 66% to 21%) has been increased from 0% to 66.7%. A pre-treatment of EAs in PVS2 vitrification solution for 30 min produced fully developed plantlets at a rate of 55.6% in post-cryopreservation. Plantlet regrowth from cryopreservation was faster in EAs that underwent the dehydration/'one-step freezing' procedure. All the plantlet from cryopreserved EAs could be easily acclimatized, producing healthy potted plants. Finally, the TTC test showed to be useful for a fast evaluation of specimen survival after thawing and, as a consequence, to speed up the development of optimized cryoprotocols.
2019
Istituto per la BioEconomia - IBE
chestnut; cryopreservation; dehydration; embryonic axes; vitrification; zygotic embryos
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact