The optimal design of a membrane gas separation process requires minimizing several objective functions subject to nonlinear relationships among the optimizing variables. This article describes a novel software product, named Optimal Membrane-Process Design (OMPD), for the optimal design of membrane gas separation processes. The product generates several potential process design configurations and then searches the process design parameters and operating conditions spaces to arrive at optimal design specifications and operating conditions. It is able to consider every type and any number of operational, compositional, and economical objective functions in a computationally cost-effective manner. It calculates all Pareto optimal solutions in a single trial. It can optimize any number of membrane units arranged in multi-step and/or multi-stage configurations. It optimally places pairs of adjacent membrane units, either two-step or two-stage, while simultaneously considering several membrane types.

Optimal Membrane-Process Design (OMPD): A software product for optimal design of membrane gas separation processes

Jansen Johannes C
;
Esposito Elisa;Fuoco Alessio;Drioli Enrico;
2020

Abstract

The optimal design of a membrane gas separation process requires minimizing several objective functions subject to nonlinear relationships among the optimizing variables. This article describes a novel software product, named Optimal Membrane-Process Design (OMPD), for the optimal design of membrane gas separation processes. The product generates several potential process design configurations and then searches the process design parameters and operating conditions spaces to arrive at optimal design specifications and operating conditions. It is able to consider every type and any number of operational, compositional, and economical objective functions in a computationally cost-effective manner. It calculates all Pareto optimal solutions in a single trial. It can optimize any number of membrane units arranged in multi-step and/or multi-stage configurations. It optimally places pairs of adjacent membrane units, either two-step or two-stage, while simultaneously considering several membrane types.
2020
Istituto per la Tecnologia delle Membrane - ITM
Membrane gas separation
Multi-objective optimization
Process design
Software product
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0098135419309457-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.52 MB
Formato Adobe PDF
3.52 MB Adobe PDF Visualizza/Apri
1-s2.0-S0098135419309457-mmc1-compressed.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact