Segmenting skin lesions in dermoscopic images is a key step for the automatic diagnosis of melanoma. In this framework, this paper presents a new algorithm that after a pre-processing phase aimed at reducing the computation burden, removing artifacts and improving contrast, selects the skin lesion pixels in terms of their saliency and color. The method is tested on a publicly available dataset and is evaluated both qualitatively and quantitatively.

Automatic Skin Lesion Segmentation based on Saliency and Color

Ramella G
Primo
2020

Abstract

Segmenting skin lesions in dermoscopic images is a key step for the automatic diagnosis of melanoma. In this framework, this paper presents a new algorithm that after a pre-processing phase aimed at reducing the computation burden, removing artifacts and improving contrast, selects the skin lesion pixels in terms of their saliency and color. The method is tested on a publicly available dataset and is evaluated both qualitatively and quantitatively.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
978-989-758-402-2
Dermoscopic images
color image processing
saliency map
skin lesion segmentation
File in questo prodotto:
File Dimensione Formato  
prod_417024-doc_147032.pdf

Open Access dal 01/01/2023

Descrizione: Automatic Skin Lesion Segmentation based on Saliency and Color
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 4.39 MB
Formato Adobe PDF
4.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact