The quantum key distribution protocol uses one degree of freedom of a single quantum system to encode information. If this information has correlations with the system's other degrees of freedom, or if the measurement efficiencies on the receiver side depend on them, a security loophole called side channel is created. An eavesdropper can exploit it to gain information without disturbing the system, and thus, without revealing the attack. Here, we analyze side channels in a free-space QKD sender and receiver implementation and focus especially on the dependencies and side channels for the spatial degree of freedom.

Spatial Mode Side Channels in Free-Space QKD Implementations

Corrielli Giacomo;
2015

Abstract

The quantum key distribution protocol uses one degree of freedom of a single quantum system to encode information. If this information has correlations with the system's other degrees of freedom, or if the measurement efficiencies on the receiver side depend on them, a security loophole called side channel is created. An eavesdropper can exploit it to gain information without disturbing the system, and thus, without revealing the attack. Here, we analyze side channels in a free-space QKD sender and receiver implementation and focus especially on the dependencies and side channels for the spatial degree of freedom.
2015
Istituto di fotonica e nanotecnologie - IFN
Cryptographic protocols
quantum key distribution (QKD)
optical transmitters
optical receivers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 17
social impact