NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways, since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr) moieties in ADP-ribosylation reactions, and a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins. NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in the release and signaling of Ca++, and of diadenosine tetraphosphate (Ap4A) and oligoadenylates (oligo2'-5'A)--two immune response-activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr) transfer reactions. In this review, the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, ADP-ribosylating enzymes are introduced, as well as the importance to restore the NAD+ pools in these systems. Finally, a special attention is presently focused on viral macrodomains, aimed to develop inhibitors to improve the immune response to viruses.

Emerging Concepts on the Role of ADP-Ribosylation

Poltronieri P
2020

Abstract

NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways, since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr) moieties in ADP-ribosylation reactions, and a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins. NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in the release and signaling of Ca++, and of diadenosine tetraphosphate (Ap4A) and oligoadenylates (oligo2'-5'A)--two immune response-activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr) transfer reactions. In this review, the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, ADP-ribosylating enzymes are introduced, as well as the importance to restore the NAD+ pools in these systems. Finally, a special attention is presently focused on viral macrodomains, aimed to develop inhibitors to improve the immune response to viruses.
2020
Istituto di Scienze delle Produzioni Alimentari - ISPA
NAD
ADP RIBOSYLATION
post-translational modification (PTM)
Macrodomain
ADP ribose glycohydrolases (ARH);
File in questo prodotto:
File Dimensione Formato  
prod_417334-doc_147184.pdf

accesso aperto

Descrizione: CHALLENGES-11-00002.PDF
Tipologia: Versione Editoriale (PDF)
Dimensione 199.61 kB
Formato Adobe PDF
199.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact