Suspensions of calcite in water are employed in many industrial fields such as paper filling, pharmaceutics or heritage conservation. Whereas organics are generally used to tune the Theological properties of the paste, we also expect simple ions to be able to control the suspension rheology via the interparticle forces. We have thus investigated the impact of calcium, sodium and hydroxide ions on the elasticity of a colloidal gel of nanocalcite. We confront our macroscopic measurements to DLVO interaction potentials, based on chemical speciation and measurements of the zeta potential. Upon addition of calcium hydroxide, we observe a minimum in shear modulus, correlated to a maximum in the DLVO energy barrier, due to two competing effects: Calcium adsorption onto calcite surface rises the zeta potential, while increasing salt concentration induces stronger electrostatic screening. We also demonstrate that the addition of sodium hydroxide completely screens the surface charge and leads to a more rigid paste. A second important result is that carbonation of the calcite suspensions by the atmospheric CO2 leads to a convergent high elasticity of the colloidal gels, whatever their initial value, also well rationalized by DLVO theory and resulting from a decrease in zeta potential. (C) 2019 Elsevier Inc. All rights reserved.

Simple ions control the elasticity of calcite gels via interparticle forces

Costa Anna;Gardini Davide;
2019

Abstract

Suspensions of calcite in water are employed in many industrial fields such as paper filling, pharmaceutics or heritage conservation. Whereas organics are generally used to tune the Theological properties of the paste, we also expect simple ions to be able to control the suspension rheology via the interparticle forces. We have thus investigated the impact of calcium, sodium and hydroxide ions on the elasticity of a colloidal gel of nanocalcite. We confront our macroscopic measurements to DLVO interaction potentials, based on chemical speciation and measurements of the zeta potential. Upon addition of calcium hydroxide, we observe a minimum in shear modulus, correlated to a maximum in the DLVO energy barrier, due to two competing effects: Calcium adsorption onto calcite surface rises the zeta potential, while increasing salt concentration induces stronger electrostatic screening. We also demonstrate that the addition of sodium hydroxide completely screens the surface charge and leads to a more rigid paste. A second important result is that carbonation of the calcite suspensions by the atmospheric CO2 leads to a convergent high elasticity of the colloidal gels, whatever their initial value, also well rationalized by DLVO theory and resulting from a decrease in zeta potential. (C) 2019 Elsevier Inc. All rights reserved.
2019
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Colloidal gel
Calcite
DLVO
Zeta potential
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact