The effects of a large collagen-hydroxyapatite (COL-HA) substitute with or without isolated bone marrow nuclear cells (BMNC) on spine fusion were evaluated using a two-level posterolateral spinal fusion model in sheep. Six sheep each were included in both the COL-HA and autograft groups. In each animal, spine fusions were performed at two levels by randomization with or without BMNC. After an observation period of 4.5 months, the fusion blocks (length = 50 mm) were harvested and evaluated by micro-CT with respect to fusion rate and microarchitecture, and histology was performed to qualitatively assess new bone morphology. BMNC supplementation did not lead to significant differences in fusion rates or microarchitectural properties in the both groups (p = 0.56). Porosity decreased significantly in the COL-HA group (p = 0.002), suggesting a relatively fast degradation of COL-HA. Qualitative histology assessment revealed quick reabsorption of COL-HA replaced by newly formed bone, and this new bone morphology was similar to autograft. Interestingly, COL-HA generated significant amounts of new bone in vivo which were similar to autograft, and the presence of BMNC seemed to enhance this process. Apart from porosity, the comparable fusion rate and similar microarchitectural parameters suggested equal performance of COL-HA and autograft with respect to spine fusion and bone quality. In conclusion, the COL-HA with BMNC demonstrated comparable fusion rates as the autograft. COL-HA was capable of forming new bone and was revealed to be similar to the autograft with respect to microarchitectural properties apart from porosity of the fusion blocks.

Collagen-hydroxyapatite composite substitute and bone marrow nuclear cells on posterolateral spine fusion in sheep

Sandri Monica;Tampieri Anna;
2019

Abstract

The effects of a large collagen-hydroxyapatite (COL-HA) substitute with or without isolated bone marrow nuclear cells (BMNC) on spine fusion were evaluated using a two-level posterolateral spinal fusion model in sheep. Six sheep each were included in both the COL-HA and autograft groups. In each animal, spine fusions were performed at two levels by randomization with or without BMNC. After an observation period of 4.5 months, the fusion blocks (length = 50 mm) were harvested and evaluated by micro-CT with respect to fusion rate and microarchitecture, and histology was performed to qualitatively assess new bone morphology. BMNC supplementation did not lead to significant differences in fusion rates or microarchitectural properties in the both groups (p = 0.56). Porosity decreased significantly in the COL-HA group (p = 0.002), suggesting a relatively fast degradation of COL-HA. Qualitative histology assessment revealed quick reabsorption of COL-HA replaced by newly formed bone, and this new bone morphology was similar to autograft. Interestingly, COL-HA generated significant amounts of new bone in vivo which were similar to autograft, and the presence of BMNC seemed to enhance this process. Apart from porosity, the comparable fusion rate and similar microarchitectural parameters suggested equal performance of COL-HA and autograft with respect to spine fusion and bone quality. In conclusion, the COL-HA with BMNC demonstrated comparable fusion rates as the autograft. COL-HA was capable of forming new bone and was revealed to be similar to the autograft with respect to microarchitectural properties apart from porosity of the fusion blocks.
2019
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Collagen-hydroxyapatite
bone marrow nuclear cells
spine fusion
microarchitecture
sheep
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact