Cyber-Physical Systems are usually subject to dependability requirements such as safety and reliability constraints. Over the last 50 years, a body of efficient fault-tolerance mechanisms has been devised to handle faults occurring at run-time. However, properly implementing those mechanisms is a time-consuming task that requires a great deal of know-how. In this paper, we propose a general framework which allows system designers to decouple functional and non-functional concerns, and express non-functional properties at design time using domain-specific languages. In the spirit of generative programming, functional models are then automatically "augmented" with dependability mechanisms. Importantly, the real-time behavior of the initial models in terms of sampling times and meeting deadlines is preserved. The practicality of the approach is demonstrated with the automated implementation of one prominent software fault-tolerance pattern, namely N-Version Programming, in the CPAL model-driven engineering workflow.

Automated fault tolerance augmentation in model-driven engineering for CPS

Ivan Cibrario Bertolotti;
2020

Abstract

Cyber-Physical Systems are usually subject to dependability requirements such as safety and reliability constraints. Over the last 50 years, a body of efficient fault-tolerance mechanisms has been devised to handle faults occurring at run-time. However, properly implementing those mechanisms is a time-consuming task that requires a great deal of know-how. In this paper, we propose a general framework which allows system designers to decouple functional and non-functional concerns, and express non-functional properties at design time using domain-specific languages. In the spirit of generative programming, functional models are then automatically "augmented" with dependability mechanisms. Importantly, the real-time behavior of the initial models in terms of sampling times and meeting deadlines is preserved. The practicality of the approach is demonstrated with the automated implementation of one prominent software fault-tolerance pattern, namely N-Version Programming, in the CPAL model-driven engineering workflow.
2020
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Cognification
Model-driven engineering
Fault tolerance
Industrial cyber physical systems
Domain-specific languages
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact