A new iterative method for the solution of linear systems, based upon a new splitting of the coefficient matrix A, is presented. The method is obtained by considering splittings or the type A (A - M) + M, where M ^ (-1) is a symmetric tridiagonal matrix, and by minimizing the Frobenius norm of the iteration matrix so derived. Numerical examples are provided, showing that our algorithm improves the rate of convergence of Jacobi method, without increasing the order of magnitude of the computational efforts required.

New techniques for the solution of linear systems by iterative methods

Codenotti B;Favati P
1987

Abstract

A new iterative method for the solution of linear systems, based upon a new splitting of the coefficient matrix A, is presented. The method is obtained by considering splittings or the type A (A - M) + M, where M ^ (-1) is a symmetric tridiagonal matrix, and by minimizing the Frobenius norm of the iteration matrix so derived. Numerical examples are provided, showing that our algorithm improves the rate of convergence of Jacobi method, without increasing the order of magnitude of the computational efforts required.
1987
Istituto di informatica e telematica - IIT
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
numerical linear algebra
linear systems
direct and iterative methods
File in questo prodotto:
File Dimensione Formato  
prod_419714-doc_148444.pdf

solo utenti autorizzati

Descrizione: New techniques for the solution of linear systems by iterative methods
Tipologia: Versione Editoriale (PDF)
Dimensione 301.42 kB
Formato Adobe PDF
301.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact