This review is devoted to discuss the unique characteristics of multi-jet electrospinning technique, compared to other spinning techniques, and its utilization in spinning of natural as well as synthetic polymers. The advantages and inadequacies of the current commercial chemical spinning methods; namely wet spinning, melt spinning, dry spinning, and electrospinning are discussed. The unconventional applications of electrospinning in textile and non-textile sectors are reported. Special emphasis is devoted to the theory and technology of the multijet electrospinning as well as its applications. The current status of multi-jet electrospining and future prospects are outlined. Using multi-jet electrospinning technique, various polymers have been electrospun into uniform blend nanofibrous mats with good dispersibility. In addition to the principle of multi-jet electro electrospinning, the different devices used for this technique are also highlighted.

A critique on multi-jet electrospinning: State of the art and future outlook

Claudia Vineis;Alessio Varesano;Riccardo Andrea Carletto;Cinzia Tonetti;
2019

Abstract

This review is devoted to discuss the unique characteristics of multi-jet electrospinning technique, compared to other spinning techniques, and its utilization in spinning of natural as well as synthetic polymers. The advantages and inadequacies of the current commercial chemical spinning methods; namely wet spinning, melt spinning, dry spinning, and electrospinning are discussed. The unconventional applications of electrospinning in textile and non-textile sectors are reported. Special emphasis is devoted to the theory and technology of the multijet electrospinning as well as its applications. The current status of multi-jet electrospining and future prospects are outlined. Using multi-jet electrospinning technique, various polymers have been electrospun into uniform blend nanofibrous mats with good dispersibility. In addition to the principle of multi-jet electro electrospinning, the different devices used for this technique are also highlighted.
2019
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Multi-jet electrospinning
biopolymers
nanofibres
nonwoven mats
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? ND
social impact