We present an analysis of the bit-cost of some numerical linear system solvers. We use measures of the computational cost of algorithms, which are deeply related to their numerical behaviour. We derive upper bounds to the worst case bit-performance of the Gaussian elimination, Jacobi's and Newton's methods, implemented either in a sequential or in a parallel environment. Moreover, we analyze an interesting special case, e.g. the solution of triangular Toeplitz linear systems. © 1988.

The bit-cost of some algorithms for the solution of linear systems

Codenotti B
1988

Abstract

We present an analysis of the bit-cost of some numerical linear system solvers. We use measures of the computational cost of algorithms, which are deeply related to their numerical behaviour. We derive upper bounds to the worst case bit-performance of the Gaussian elimination, Jacobi's and Newton's methods, implemented either in a sequential or in a parallel environment. Moreover, we analyze an interesting special case, e.g. the solution of triangular Toeplitz linear systems. © 1988.
1988
Istituto di informatica e telematica - IIT
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
linear systems
bit-cost
Gaussian e1imination
Jacobi's and Newton's methods
File in questo prodotto:
File Dimensione Formato  
prod_419471-doc_148261.pdf

solo utenti autorizzati

Descrizione: The bit-cost of some algorithms for the solution of linear systems
Tipologia: Versione Editoriale (PDF)
Dimensione 468.84 kB
Formato Adobe PDF
468.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/363886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact