This paper discusses the impedance and front-toback ratio performance of asymmetric dipoles. These parameters are very important when the antennas are placed over a conductive ground plane and should operate over multi-octave frequency bands. The operation of these antennas is usually described relying on analogies with more classical structures such as symmetric dipoles and tapered slot antennas. To provide a solid theoretical background to this intuition, this work presents the application of characteristic mode analysis to multi-octave dipole antennas. Firstly, a brief review of the main characteristic mode content is presented. Then, characteristic mode analysis is applied to three antenna concepts to emphasize how their geometry impacts on the relevant figures of merit. This allows to draw some conclusions on the achievable performance by different designs.
Characteristic Mode Analysis of Multi-Octave Asymmetric Dipoles
A Tibaldi;G Virone;F Paonessa;G Addamo;O A Peverini;M Lumia;L Ciorba
2020
Abstract
This paper discusses the impedance and front-toback ratio performance of asymmetric dipoles. These parameters are very important when the antennas are placed over a conductive ground plane and should operate over multi-octave frequency bands. The operation of these antennas is usually described relying on analogies with more classical structures such as symmetric dipoles and tapered slot antennas. To provide a solid theoretical background to this intuition, this work presents the application of characteristic mode analysis to multi-octave dipole antennas. Firstly, a brief review of the main characteristic mode content is presented. Then, characteristic mode analysis is applied to three antenna concepts to emphasize how their geometry impacts on the relevant figures of merit. This allows to draw some conclusions on the achievable performance by different designs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.