The beheviours of both the error end the residual in the solution of a linear system are studied, by assuming representation and roundoff errors to be random variables. Two quantities which measure the mean value of the linear part of the error end the mean value of the linear part of the residual are introduced, giving stability and good behalviour criteria. These criteria are applied to various algorithms (Gaussian elimination with different types of pivoting, ortogonalization techniques). In addition the influence of row-scaling is studied.

Stability and good-behaviour of algorithms for solving linear systems

1986

Abstract

The beheviours of both the error end the residual in the solution of a linear system are studied, by assuming representation and roundoff errors to be random variables. Two quantities which measure the mean value of the linear part of the error end the mean value of the linear part of the residual are introduced, giving stability and good behalviour criteria. These criteria are applied to various algorithms (Gaussian elimination with different types of pivoting, ortogonalization techniques). In addition the influence of row-scaling is studied.
1986
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Linear Systems
File in questo prodotto:
File Dimensione Formato  
prod_419844-doc_148559.pdf

accesso aperto

Descrizione: Stability and good-behaviour of algorithms for solving linear systems
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/364033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact