Time-resolved spectroscopies using intense THz pulses appear as a promising tool to address collective electronic excitations in condensed matter. In particular, recent experiments showed the possibility to selectively excite collective modes emerging across a phase transition, as is the case for superconducting and charge-density-wave (CDW) systems. One possible signature of these excitations is the emergence of coherent oscillations of the differential probe field in pump-probe protocols. While the analogy with the case of phonon modes suggests that the basic underlying mechanism should be a sum-frequency stimulated Raman process, a general theoretical scheme able to describe the experiments and to define the relevant optical quantity is still lacking. Here we provide this scheme by showing that coherent oscillations as a function of the pump-probe time delay can be linked to the convolution in the frequency domain between the squared pump field and a Raman-like nonlinear optical kernel. This approach is applied and discussed in a few paradigmatic examples: Ordinary phonons in an insulator, and collective charge and Higgs fluctuations across a superconducting and a CDW transition. Our results not only account very well for the existing experimental data in a wide variety of systems, but they also offer a useful perspective to design future experiments in emerging materials.

Theory of coherent-oscillations generation in terahertz pump-probe spectroscopy: From phonons to electronic collective modes

Udina M.;Benfatto L.
2019

Abstract

Time-resolved spectroscopies using intense THz pulses appear as a promising tool to address collective electronic excitations in condensed matter. In particular, recent experiments showed the possibility to selectively excite collective modes emerging across a phase transition, as is the case for superconducting and charge-density-wave (CDW) systems. One possible signature of these excitations is the emergence of coherent oscillations of the differential probe field in pump-probe protocols. While the analogy with the case of phonon modes suggests that the basic underlying mechanism should be a sum-frequency stimulated Raman process, a general theoretical scheme able to describe the experiments and to define the relevant optical quantity is still lacking. Here we provide this scheme by showing that coherent oscillations as a function of the pump-probe time delay can be linked to the convolution in the frequency domain between the squared pump field and a Raman-like nonlinear optical kernel. This approach is applied and discussed in a few paradigmatic examples: Ordinary phonons in an insulator, and collective charge and Higgs fluctuations across a superconducting and a CDW transition. Our results not only account very well for the existing experimental data in a wide variety of systems, but they also offer a useful perspective to design future experiments in emerging materials.
2019
Istituto dei Sistemi Complessi - ISC
Charge density
Charge density waves
Frequency domain analysis
File in questo prodotto:
File Dimensione Formato  
prod_409389-doc_143918.pdf

solo utenti autorizzati

Descrizione: Theory of coherent-oscillations generation in terahertz pump-probe spectroscopy
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/364128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact