Imaging is a class of non-Bayesian methods for the revision of probability density functions originally proposed as a semantics for conditional logic. Two of this revision functions, Standard Imaging and General Imaging have successfully been applied to modelling information retrieval (IR). Due to the problematic nature of a "direct" implementation of Imaging revision functions, we propose thei alternative implementaion by representing the semantic structure that underlies them, in the language of a probalistic (Bayesian) logic. Recasting this models of information retrieval in such a general-purpose Knowledge representation (KR) tool, be sides showing the potential of this "Bayesian" tool for the representation of non-Bayesian revision functions, paves the way to a possible integration of this models with other more KR-oriented modes of IR, and to the exploitation of general purpose domain-knowledge.
Conditional probabilistic reasoning without conditional logic
Sebastiani F
1997
Abstract
Imaging is a class of non-Bayesian methods for the revision of probability density functions originally proposed as a semantics for conditional logic. Two of this revision functions, Standard Imaging and General Imaging have successfully been applied to modelling information retrieval (IR). Due to the problematic nature of a "direct" implementation of Imaging revision functions, we propose thei alternative implementaion by representing the semantic structure that underlies them, in the language of a probalistic (Bayesian) logic. Recasting this models of information retrieval in such a general-purpose Knowledge representation (KR) tool, be sides showing the potential of this "Bayesian" tool for the representation of non-Bayesian revision functions, paves the way to a possible integration of this models with other more KR-oriented modes of IR, and to the exploitation of general purpose domain-knowledge.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_409458-doc_143958.pdf
solo utenti autorizzati
Descrizione: Conditional probabilistic reasoning without conditional logic
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


