This study analyzes the energy sustainability of citrus residues conversion and valorization through fluidized bed gasification plant. An energy analysis of the integration into a real citrus juice factory of a combined heat and power system (CHP), coupled with a citrus residues air-steam gasification unit, is presented. Energy and biomass assessments are estimated by matching the gasification unit performance with the syngas request of the CHP unit through an integrated simulation model. Results show that the integration of a gasification-CHP system into the juice industrial cycle could supply 7,875 MWh/year of electricity, corresponding to 88% of the factory's demand. About 82% of the heat produced in the CHP unit is used to dry the citrus residues, while about 1,086 MWh/year are available for the heat request of the juice production process. This allow saving 27,906 MWh/year of non-renewable primary energy, reducing the specific non-renewable primary energy consumption of about 46% the factory's carbon dioxide impact could be decreased of about 45%.

Integration into a citrus juice factory of air-steam gasification and CHP system: Energy sustainability assessment

Maisano S;Urbani F;Chiodo V
2019

Abstract

This study analyzes the energy sustainability of citrus residues conversion and valorization through fluidized bed gasification plant. An energy analysis of the integration into a real citrus juice factory of a combined heat and power system (CHP), coupled with a citrus residues air-steam gasification unit, is presented. Energy and biomass assessments are estimated by matching the gasification unit performance with the syngas request of the CHP unit through an integrated simulation model. Results show that the integration of a gasification-CHP system into the juice industrial cycle could supply 7,875 MWh/year of electricity, corresponding to 88% of the factory's demand. About 82% of the heat produced in the CHP unit is used to dry the citrus residues, while about 1,086 MWh/year are available for the heat request of the juice production process. This allow saving 27,906 MWh/year of non-renewable primary energy, reducing the specific non-renewable primary energy consumption of about 46% the factory's carbon dioxide impact could be decreased of about 45%.
2019
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Air-steam gasification
Combined heat and power
Energy assessment
Non-renewable primary energy
Residual citrus peels
Biomass gasification modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/364206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact