Silicon carbide (SiC) is a promising candidate as a material platform for photonic quantum technologies due to the coexistence of quantum emitters and a non-centrosymmetric crystal structure. The realization of a single-photon detector was hampered from both the poor surface quality and the difficulties in micromachining this material. In this work, we realized superconducting nanowire single-photon detectors (SNSPDs) integrated on top of high-quality 3C SiC whose electro-optical characterization was performed thanks to a novel alignment method. We demonstrate that SNSPDs with high internal efficiency can be fabricated which is a fundamental building block toward the realization of complex architectures in this platform.

Electro-optical Characterization of Superconducting Nanowire Single-Photon Detectors Fabricated on 3C Silicon Carbide

Martini F;Gaggero A;Mattioli F;Leoni R
2019

Abstract

Silicon carbide (SiC) is a promising candidate as a material platform for photonic quantum technologies due to the coexistence of quantum emitters and a non-centrosymmetric crystal structure. The realization of a single-photon detector was hampered from both the poor surface quality and the difficulties in micromachining this material. In this work, we realized superconducting nanowire single-photon detectors (SNSPDs) integrated on top of high-quality 3C SiC whose electro-optical characterization was performed thanks to a novel alignment method. We demonstrate that SNSPDs with high internal efficiency can be fabricated which is a fundamental building block toward the realization of complex architectures in this platform.
2019
Istituto di fotonica e nanotecnologie - IFN
Quantum photonics
SiC
SNSPD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/364527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact