The precise detection of flammable and explosive gases and vapors remains an important issue because of the increasing demand for renewable energy sources and safety requirements in industrial processes. Metal oxides (TiO2, SnO2, ZnO, etc.) are very attractive materials for the manufacturing of chemical gas sensors. However, their gas selectivity issues and further improvement in the sensing response remain a significant challenge. The incorporation of metal oxides with two-dimensional (2D) graphene oxide (GO) is considered to be a promising approach to obtaining hybrid structures with improved gas-sensing performance. Herein, we report the development of GO and niobium-doped titanium dioxide nanotube (NT) hybrid structures with a tunable selectivity and sensing response against hydrogen gas, achieved by properly controlling the degree of reduction and concentration of GO. The effects of these parameters are systematically studied in terms of the response amplitude and selectivity. It was found that, compared to undoped titanium dioxide nanotubes, the hybrid material with an optimal concentration of reduced-GO and the introduction of niobium shows an increase in hydrogen response of about an order of magnitude and a simultaneous reduction of the response to possible interfering compounds such as carbon monoxide and acetone, thus providing enhanced selectivity. This research may provide an efficient way to enhance the chemical sensing performance of metal oxide nanomaterials.

Investigation of Reduced Graphene Oxide and a Nb-Doped TiO2 Nanotube Hybrid Structure to Improve the Gas-Sensing Response and Selectivity

Galstyan V;Ponzoni A;Kholmanov I;Natile MM;
2019

Abstract

The precise detection of flammable and explosive gases and vapors remains an important issue because of the increasing demand for renewable energy sources and safety requirements in industrial processes. Metal oxides (TiO2, SnO2, ZnO, etc.) are very attractive materials for the manufacturing of chemical gas sensors. However, their gas selectivity issues and further improvement in the sensing response remain a significant challenge. The incorporation of metal oxides with two-dimensional (2D) graphene oxide (GO) is considered to be a promising approach to obtaining hybrid structures with improved gas-sensing performance. Herein, we report the development of GO and niobium-doped titanium dioxide nanotube (NT) hybrid structures with a tunable selectivity and sensing response against hydrogen gas, achieved by properly controlling the degree of reduction and concentration of GO. The effects of these parameters are systematically studied in terms of the response amplitude and selectivity. It was found that, compared to undoped titanium dioxide nanotubes, the hybrid material with an optimal concentration of reduced-GO and the introduction of niobium shows an increase in hydrogen response of about an order of magnitude and a simultaneous reduction of the response to possible interfering compounds such as carbon monoxide and acetone, thus providing enhanced selectivity. This research may provide an efficient way to enhance the chemical sensing performance of metal oxide nanomaterials.
2019
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto Nazionale di Ottica - INO
doped TiO2
graphene oxide
H2-sensing
hybrid structure
niobium doping
selectivity
thermal reduction
File in questo prodotto:
File Dimensione Formato  
prod_418946-doc_147986.pdf

solo utenti autorizzati

Descrizione: Investigation of Reduced Graphene Oxide and a Nb-Doped TiO2...
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/364849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 52
social impact