In this paper, the dynamic characteristics of type-I edge-localized modes (ELM) time series from the JET tokamak, the world's largest magnetic confinement plasma physics experiment, have been investigated through recurrence plots (RPs). The analysis has been focused on RPs of pedestal temperature, line averaged electron density, and outer divertor D? time series during experiments with a carbon wall. The analysis of RPS shows the patterns similar to those characteristics of signals exhibiting type-2 intermittency, in particular, a characteristic kite-like shape; this gives useful hints to model the temperature signal as well as the D? radiation time series, with simple nonlinear maps capturing the nearly periodic behavior of type-I ELMs.
Recurrence Plots for Dynamic Analysis of Type-I ELMs at JET with a Carbon Wall
Murari A;
2019
Abstract
In this paper, the dynamic characteristics of type-I edge-localized modes (ELM) time series from the JET tokamak, the world's largest magnetic confinement plasma physics experiment, have been investigated through recurrence plots (RPs). The analysis has been focused on RPs of pedestal temperature, line averaged electron density, and outer divertor D? time series during experiments with a carbon wall. The analysis of RPS shows the patterns similar to those characteristics of signals exhibiting type-2 intermittency, in particular, a characteristic kite-like shape; this gives useful hints to model the temperature signal as well as the D? radiation time series, with simple nonlinear maps capturing the nearly periodic behavior of type-I ELMs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.