Adjuvants are components of vaccine that enhance the specific immune response against co- inoculated antigens. Recently we reported the characterization of a synthetic sulfolipid named Sulfavant A (1) as a promising candidate of a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. Here we report an improved synthesis of the sulfolipid scaffold, as well as the preparation of two analogs named Sulfavant-S (2) and Sulfavant-R (3) with enhanced property to modulate master immune targets such as human Dendritic Cells (hDCs). According to the present approach, synthesis of 1 is reduced from 14 to 11 steps with nearly triplication of the overall yield (11%). The new members 2 and 3 elicit DC maturation at a concentration of 10 nM, which is 1000 times more potent than the parent molecule 1. Analysis of dynamic light scattering indicates self-assembly of Sulfavants and formation of colloidal particles with a small hydrodynamic radius (50 nm) for the epimers 2 and 3, and a larger radius (150 nm) for 1. The colloidal aggregates are responsible for the bell-shaped dose-response curve of these products. We conclude that particle size also affects the equilibrium with free monomers thus determining the effective concentration of the sulfolipid molecule at the cellular targets and the different immunological efficacy of 1-3. Sulfavants (1-3) do not show in vitro cytotoxicity at concentrations 105 higher than the dose that triggers maximal immune response, thus predicting a low level of toxicological risk in their formulation in vaccines.

Diasteroselective Colloidal Self-Assembly Affects the Immunological Response of the Molecular Adjuvant Sulfavant

Manzo E;Gallo C;Fioretto L;Nuzzo G;Fontana A
2019

Abstract

Adjuvants are components of vaccine that enhance the specific immune response against co- inoculated antigens. Recently we reported the characterization of a synthetic sulfolipid named Sulfavant A (1) as a promising candidate of a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. Here we report an improved synthesis of the sulfolipid scaffold, as well as the preparation of two analogs named Sulfavant-S (2) and Sulfavant-R (3) with enhanced property to modulate master immune targets such as human Dendritic Cells (hDCs). According to the present approach, synthesis of 1 is reduced from 14 to 11 steps with nearly triplication of the overall yield (11%). The new members 2 and 3 elicit DC maturation at a concentration of 10 nM, which is 1000 times more potent than the parent molecule 1. Analysis of dynamic light scattering indicates self-assembly of Sulfavants and formation of colloidal particles with a small hydrodynamic radius (50 nm) for the epimers 2 and 3, and a larger radius (150 nm) for 1. The colloidal aggregates are responsible for the bell-shaped dose-response curve of these products. We conclude that particle size also affects the equilibrium with free monomers thus determining the effective concentration of the sulfolipid molecule at the cellular targets and the different immunological efficacy of 1-3. Sulfavants (1-3) do not show in vitro cytotoxicity at concentrations 105 higher than the dose that triggers maximal immune response, thus predicting a low level of toxicological risk in their formulation in vaccines.
2019
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
sulfavant
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/365096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact