Collisional particle transport in the presence of field perturbations originating from various MHD activity is examined theoretically on tokamaks (ITER, ASDEX Upgrade, NSTX and DIIID) and the reversed-field pinch RFX-mod [1]. For ITER and ASDEX Upgrade, modes typically leading to a disruption [2] are considered. On NSTX and DIII-D unstable Alfvén modes are investigated. Finally on RFX-mode the effect of saturated tearing modes is studied. The existence of subdiffusive transport [3] for electrons is found to occur in some cases at very low mode amplitudes. Subdiffusion is also found for ions of high energy. In fact, orbit resonances can produce long time correlations and dynamical traps [4] for particle trajectories at perturbation amplitudes much too small for the orbits to be represented as uniformly chaotic. Besides this, in all devices orbits show a high degree of anisotropy, especially when comparing the angular (toroidal and poloidal) and radial directions. As a consequence, in the presence of field perturbations produced by MHD modes, the use of a traditional diffusive-convective scheme for transport, which is expressed by the Fick's law~? = -D~?n+~v n, leading to the well known transport scalings, is questionable. The existence and nature of subdiffusive transport is difficult to determine from first-principle theories, since it is found to depend on the nature of the mode spectrum and frequency, as well as on the mode amplitudes: this fact is mirrored in the different value of the Kubo number found in the devices analyzed in this paper. The connection between subdiffusive transport, Kubo and nonlocal models of transport [5] is also discussed.

Nonlocal transport in toroidal plasma devices in the presence of magnetic perturbations

Spizzo G;Granucci G;
2019

Abstract

Collisional particle transport in the presence of field perturbations originating from various MHD activity is examined theoretically on tokamaks (ITER, ASDEX Upgrade, NSTX and DIIID) and the reversed-field pinch RFX-mod [1]. For ITER and ASDEX Upgrade, modes typically leading to a disruption [2] are considered. On NSTX and DIII-D unstable Alfvén modes are investigated. Finally on RFX-mode the effect of saturated tearing modes is studied. The existence of subdiffusive transport [3] for electrons is found to occur in some cases at very low mode amplitudes. Subdiffusion is also found for ions of high energy. In fact, orbit resonances can produce long time correlations and dynamical traps [4] for particle trajectories at perturbation amplitudes much too small for the orbits to be represented as uniformly chaotic. Besides this, in all devices orbits show a high degree of anisotropy, especially when comparing the angular (toroidal and poloidal) and radial directions. As a consequence, in the presence of field perturbations produced by MHD modes, the use of a traditional diffusive-convective scheme for transport, which is expressed by the Fick's law~? = -D~?n+~v n, leading to the well known transport scalings, is questionable. The existence and nature of subdiffusive transport is difficult to determine from first-principle theories, since it is found to depend on the nature of the mode spectrum and frequency, as well as on the mode amplitudes: this fact is mirrored in the different value of the Kubo number found in the devices analyzed in this paper. The connection between subdiffusive transport, Kubo and nonlocal models of transport [5] is also discussed.
2019
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
tokamaks
ITER
ASDEX Upgrade
NSTX
DIIID
RFX-Mod2
toroidal plasma devices
magnetic perturbations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/365211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact