Investigation about the mechanisms involved in the onset of type 2 diabetes in absence of familiarity is the focus of a research project which has led to the development of a computational model that recapitulates the aetiology of the disease. The model simulates the metabolic and immunological alterations related to type-2 diabetes associated to several clinical, physiological and behavioural characteristics of representative virtual patients. In this study, the results of 46170 simulations corresponding to the same number of virtual subjects, experiencing different lifestyle conditions, are analysed for the construction of a statis- tical model able to recapitulate the simulated dynamics. The resulting machine learning model adequately predicts the synthetic data and can therefore be used as a computationally- cheaper version of the detailed mathematical model, ready to be implemented on mobile devices to allow self assessment by informed and aware individuals.

Potential predictors of type-2 diabetes risk: machine learning, synthetic data and wearable health devices

Paola Stolfi;Maria Concetta Palumbo;Paolo Tieri;Andrea Grignolio;Filippo Castiglione
2019

Abstract

Investigation about the mechanisms involved in the onset of type 2 diabetes in absence of familiarity is the focus of a research project which has led to the development of a computational model that recapitulates the aetiology of the disease. The model simulates the metabolic and immunological alterations related to type-2 diabetes associated to several clinical, physiological and behavioural characteristics of representative virtual patients. In this study, the results of 46170 simulations corresponding to the same number of virtual subjects, experiencing different lifestyle conditions, are analysed for the construction of a statis- tical model able to recapitulate the simulated dynamics. The resulting machine learning model adequately predicts the synthetic data and can therefore be used as a computationally- cheaper version of the detailed mathematical model, ready to be implemented on mobile devices to allow self assessment by informed and aware individuals.
2019
Istituto Applicazioni del Calcolo ''Mauro Picone''
T2D
diabetes
mathematical and computational modelling
simulation
machine learning
random forest
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/365405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact