Objective knowledge of tissue density distribution in CT/MRI brain datasets can be related to anatomical or neuro-functional regions for assessing pathologic conditions characterised by slight differences. The process of monitoring illness and its treatment could be then improved by a suitable detection of these variations. In this paper, we present an approach for three-dimensional (3D) classification of brain tissue densities based on a hierarchical artificial neural network (ANN) able to classify the single voxels of the examined datasets. The method developed was tested on case studies selected by an expert neuro-radiologist and consisting of both normal and pathological conditions. The results obtained were submitted for validation to a group of physicians and they judged thesystem to be really effective in practical applications.
Brain volumes characterization using hierarchical neural networks
Pieri G;Salvetti O
2003
Abstract
Objective knowledge of tissue density distribution in CT/MRI brain datasets can be related to anatomical or neuro-functional regions for assessing pathologic conditions characterised by slight differences. The process of monitoring illness and its treatment could be then improved by a suitable detection of these variations. In this paper, we present an approach for three-dimensional (3D) classification of brain tissue densities based on a hierarchical artificial neural network (ANN) able to classify the single voxels of the examined datasets. The method developed was tested on case studies selected by an expert neuro-radiologist and consisting of both normal and pathological conditions. The results obtained were submitted for validation to a group of physicians and they judged thesystem to be really effective in practical applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_43686-doc_123110.pdf
solo utenti autorizzati
Descrizione: Brain volumes characterization using hierarchical neural networks
Tipologia:
Versione Editoriale (PDF)
Dimensione
365.83 kB
Formato
Adobe PDF
|
365.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


