Phased-array radiofrequency (RF) coils are commonly used for signal reception in magnetic resonance for their large spatial coverage, typical of volume coils, and for their high signal-to-noise ratio, usually associated with surface coils. The simplest design of phased-array coils is an array of circular loops whose conductor can be constituted by flat strip or circular wire cross-sectional geometry, often partially enclosed in an RF shield for minimizing electromagnetic interference. This paper proposes a method for the analytical calculation of the mutual inductance between two circular loops constituting a dual-element phased-array coil by taking into account the conductor's geometry and the effect of an eventual RF shield.

A Theoretical Study on Circular Wire and Flat Strip Conductor Inductance for Magnetic Resonance-Shielded Phased-Array Circular Coils

Giulio Giovannetti
2019

Abstract

Phased-array radiofrequency (RF) coils are commonly used for signal reception in magnetic resonance for their large spatial coverage, typical of volume coils, and for their high signal-to-noise ratio, usually associated with surface coils. The simplest design of phased-array coils is an array of circular loops whose conductor can be constituted by flat strip or circular wire cross-sectional geometry, often partially enclosed in an RF shield for minimizing electromagnetic interference. This paper proposes a method for the analytical calculation of the mutual inductance between two circular loops constituting a dual-element phased-array coil by taking into account the conductor's geometry and the effect of an eventual RF shield.
2019
Magnetic Resonance coils
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/365567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact