To improve the efficiency of perovskite solar cells, careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (MXene Ti3C2Tx) with various termination groups (T-x) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and density functional theory calculations show that the addition of Ti3C2Tx to halide perovskite and TiO2 layers permits the tuning of the materials' WFs without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2Tx at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified perovskite solar cells, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without MXene.

Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells

Pecchia, A.;Larciprete, R.;Di Carlo, A.
2019

Abstract

To improve the efficiency of perovskite solar cells, careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (MXene Ti3C2Tx) with various termination groups (T-x) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and density functional theory calculations show that the addition of Ti3C2Tx to halide perovskite and TiO2 layers permits the tuning of the materials' WFs without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2Tx at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified perovskite solar cells, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without MXene.
2019
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Istituto dei Sistemi Complessi - ISC
Perovskite
MXENEs
solar cell
work function
File in questo prodotto:
File Dimensione Formato  
prod_417159-doc_168799.pdf

accesso aperto

Descrizione: Supporting Information
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF Visualizza/Apri
prod_417159-doc_186408.pdf

accesso aperto

Descrizione: Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells
Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri
prod_417159-doc_188231.pdf

solo utenti autorizzati

Descrizione: Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.22 MB
Formato Adobe PDF
5.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/365591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 454
  • ???jsp.display-item.citation.isi??? ND
social impact