We consider an adaptive isogeometric method (AIGM) based on (truncated) hierarchical B-splines and present the study of its numerical properties. By following [10, 12, 11], optimal convergence rates of the AIGM can be proved when suitable approximation classes are considered. This is in line with the theory of adaptive methods developed for finite elements, recently well reviewed in [43]. The important output of our analysis is the definition of classes of admissibility for meshes underlying hierarchical splines and the design of an optimal adaptive strategy based on these classes of meshes. The adaptivity analysis is validated on a selection of numerical tests. We also compare the results obtained with suitably graded meshes related to di.
Adaptive isogeometric methods with hierarchical splines: An overview
A Buffa;R Vazquez
2019
Abstract
We consider an adaptive isogeometric method (AIGM) based on (truncated) hierarchical B-splines and present the study of its numerical properties. By following [10, 12, 11], optimal convergence rates of the AIGM can be proved when suitable approximation classes are considered. This is in line with the theory of adaptive methods developed for finite elements, recently well reviewed in [43]. The important output of our analysis is the definition of classes of admissibility for meshes underlying hierarchical splines and the design of an optimal adaptive strategy based on these classes of meshes. The adaptivity analysis is validated on a selection of numerical tests. We also compare the results obtained with suitably graded meshes related to di.File | Dimensione | Formato | |
---|---|---|---|
prod_406548-doc_151561.pdf
accesso aperto
Descrizione: Adaptive isogeometric methods with hierarchical splines: An overview
Tipologia:
Versione Editoriale (PDF)
Dimensione
10.04 MB
Formato
Adobe PDF
|
10.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.