The 3D biogeochemical BFM-OGSTM implementation currently exploited operationally in the Copernicus Marine Environment Monitoring Services Mediterranean Sea Monitoring and Forecasting Centre (CMEMS-Med-MFC; Lazzari et al., 2010) has been complemented with a benthic component. The approach followed that of Capet et al 2016 and involves a vertically integrated benthic module accounting for the effect of environmental bottom conditions on diagenetic rates (aerobic mineralization, denitrification, nitrification) through transfer functions as well as the effect of waves and bottom currents on sediment deposition and resuspension. A balanced climatological year is simulated for various values of the resuspension parameters, using specifically calibrated transfer functions for the Adriatic Sea and generic formulations for the rest of the Mediterranean basin. The results serves the mapping of distinct provinces of the Adriatic Sea based on the benthic contributions biogeochemical budgets and the seasonal variability of benthic-pelagic fluxes. The differences with the non-benthic reference simulation are highlighted in details regarding the Adriatic, and more generally for the entire Mediterranean Sea.

Benthic contributions to Adriatic and Mediterranean biogeochemical cycles

Spagnoli F;
2017

Abstract

The 3D biogeochemical BFM-OGSTM implementation currently exploited operationally in the Copernicus Marine Environment Monitoring Services Mediterranean Sea Monitoring and Forecasting Centre (CMEMS-Med-MFC; Lazzari et al., 2010) has been complemented with a benthic component. The approach followed that of Capet et al 2016 and involves a vertically integrated benthic module accounting for the effect of environmental bottom conditions on diagenetic rates (aerobic mineralization, denitrification, nitrification) through transfer functions as well as the effect of waves and bottom currents on sediment deposition and resuspension. A balanced climatological year is simulated for various values of the resuspension parameters, using specifically calibrated transfer functions for the Adriatic Sea and generic formulations for the rest of the Mediterranean basin. The results serves the mapping of distinct provinces of the Adriatic Sea based on the benthic contributions biogeochemical budgets and the seasonal variability of benthic-pelagic fluxes. The differences with the non-benthic reference simulation are highlighted in details regarding the Adriatic, and more generally for the entire Mediterranean Sea.
2017
benthic fluxes
Adriatic Sea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/365774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact